Ideal and Real Atmospheric Boundary Layers

Mathias W. Rotach Albert A.M. Holtslag

IDEAL AND REAL ATMOSPHERIC BOUNDARY LAYERS

Mathias W. Rotach

Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria

ALBERT A.M. HOLTSLAG

Wageningen University, Wageningen, Netherlands

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright \odot 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Publisher's note: Elsevier takes a neutral position with respect to territorial disputes or jurisdictional claims in its published content, including in maps and institutional affiliations.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN 978-0-323-95957-5

For information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Working together

Contents

Preface	ix	6.3 Practical approach	62
List of symbols and acronyms	хi	6.4 Monin-Obukhov similarity theory for the surface	
		layer	64
1. Introduction		6.5 Scaling regimes	67
		References	75
1.1 The Atmospheric Boundary Layer	1	a m 1 1	
1.2 Phenomenological overview	4	7. Turbulence spectra	
1.3 Surface energy budget and the daily cycle	10	7.1 Introduction to spectral analysis	77
References	12	7.2 Energy cascade	80
		7.3 Kolmogorov hypotheses	81
		7.4 Spectra and co-spectra	82
Ideal atmospheric boundary layers		7.5 Application of spectral information References	89 90
2. A brief introduction to atmospheric turbulence		8. Observing and modeling atmospheric	
2.1 The turbulence syndrome	17	boundary layers	
2.2 The Reynolds number	19	Souriairy Myoro	
2.3 Laminar vs. turbulent flows	20	8.1 Measurements, post processing and useful diagnostics	91
2.4 Tools to describe turbulent atmospheric flows	24	8.2 Modeling and parameterization	103
References	25	References	108
3. Statistical treatment of turbulence		9. The neutral boundary layer	
3.1 Averaging, stationarity and homogeneity	27	9.1 The surface layer	114
3.2 Taylor hypothesis	31	9.2 Ekman boundary layer wind profile and depth	115
3.3 Reynolds decomposition	32	9.3 Boundary layer resistance law	116
3.4 Covariances and their physical meaning	32	9.4 Alternative boundary layer wind profile	118
3.5 Other turbulence variables	36	9.5 Turbulence in neutral boundary layers	119
References	38	References	121
4. Conservation equations for turbulent flows		10. The convective boundary layer	
4.1 Conservation equations for mean variables in a turbulent		10.1 Introduction	122
flow	39	10.2 Turbulent mixing of heat and momentum	123 125
4.2 Conservation equations for higher order moments	44	10.3 Modeling convective boundary layers	128
4.3 The closure problem	46	10.4 Land-atmosphere interactions and formation	120
References	48	of boundary layer clouds	130
5. Turbulent kinetic energy and dynamical stability		10.5 Surface layer wind gradients and profiles References	134 136
5.1 TKE-equation	49		
5.2 Dynamic stability measures	54	11. The stable boundary layer	
5.3 Turbulence potential energy	57		
References	59	11.1 Introduction	139
6. Similarity theory		11.2 The wind profile	139 142
		11.3 The temperature profile 11.4 Modeling stable boundary layers	142 144
6.1 Motivation	61	11.5 Turbulence in stable boundary layers	145
6.2 Scaling and similarity	61	11.6 Stable boundary layer depth	147

viii	itents		
11.7 Small-scale processes in the SBL and their interaction with SBL dynamics References	148 149	15.2 Mixing layer analogy15.3 A unified roughness sublayer theory15.4 Canopy impacts on urban dispersion modeling References	212 215 222 226
Real atmospheric boundary layers		16. Boundary layers over orography	
 12. Non-ideal boundary layers 12.1 Overview 12.2 Non-horizontally homogeneous surfaces 12.3 Large roughness elements—Very rough surfaces 12.4 Influence of orography 	155 157 159 160	 16.1 Introduction to mountain boundary layers 16.2 Idealized flow regimes: Flows on sloped surfaces 16.3 Idealized flow regimes: Valley and slope wind circulations 16.4 Idealized flow regimes: Flow over Gentle Hills References 	229 232 236 240 252
References	163	17. Characteristics of real terrain mountain boundary layers	
 13. Surface inhomogeneity and heterogeneity effects 13.1 Overview 13.2 Simple two-surface systems 13.3 Heterogeneous surfaces 13.4 Assessing surface influence References 	165 166 173 177 182	17.1 Horizontal inhomogeneity of the MoBL 17.2 Vertical structure of the MoBL 17.3 Turbulence structure of the MoBL 17.4 Similarity in the MoBL 17.5 Exchange to the free troposphere References	255 262 269 273 280 284
14. Flow over rough surfaces14.1 General considerations14.2 Mean profiles14.3 Scaling in the roughness sublayer above the canopy	185 191 201	18. Observing and modeling real atmospheric boundary layers 18.1 Observational challenges in complex terrain	289
References 15. Exchange processes within vegetated and urba canopies	204	18.2 Challenges for numerical modeling over complex terrain18.3 SynthesisReferences	299 308 309
15.1 Coherent structures	207	Index	315