Earth System Modeling, Data Assimilation and Predictability

Atmosphere, Oceans, Land and Human Systems

Eugenia Kalnay • Safa Mote • Cheng Da

Earth System Modeling, Data Assimilation and Predictability

Second Edition

Since the publication of the first edition of this highly regarded textbook, the value of data assimilation has become widely recognized across the Earth sciences and beyond. Data assimilation methods are now being applied to many areas of prediction and forecasting, including extreme weather events, wildfires, infectious disease epidemics, and economic modeling. This second edition provides a broad introduction to applications across the Earth systems and coupled Earth–human systems, with an expanded range of topics covering the latest developments of variational, ensemble, and hybrid data assimilation methods. New toy models and intermediate-complexity atmospheric general circulation models provide hands-on engagement with key concepts in numerical weather prediction, data assimilation, and predictability. The inclusion of computational projects, exercises, lecture notes, teaching slides, and sample exams makes this textbook an indispensable and practical resource for advanced undergraduate and graduate students, researchers, and practitioners who work in weather forecasting and climate prediction.

Eugenia Kalnay completed her PhD at the Massachusetts Institute of Technology (MIT) under Jule Charney and became the first woman on the faculty in the Department of Meteorology. In 1979, she moved to NASA's Goddard Space Flight Center, where she developed the fourth-order global numerical model and led experiments in the new science called "data assimilation." In 1984, she became Head of NASA's Global Modeling and Simulation Branch. In 1987, she became Director of the National Oceanic and Atmospheric Administration's Environmental Modeling Center, where many improvements of models and data assimilation were developed for the National Weather Service forecasts. Her paper "The NCEP/NCAR 40-year reanalysis project" (Kalnay et al., 1996) is the most cited paper in geosciences. In 1997, Kalnay became Lowry Chair at the University of Oklahoma and in 1999 became Atmospheric and Ocean Sciences Department Chair and professor at the University of Maryland, where she was later elected a Distinguished University Professor.

Safa Mote is Assistant Professor of Computational and Applied Mathematics at Portland State University and Visiting Assistant Professor of Atmospheric and Oceanic Sciences at the University of Maryland who has worked on a wide range of challenging interdisciplinary problems. He has two PhD degrees in Physics and in Applied Mathematics and Statistics, and Scientific Computing (AMSC) from the University of Maryland. He designs mathematical models to propose and assess holistic policies that lead to sustainability in interconnected environmental, economic, climate, and health systems. He develops computational methods based on Dynamical Systems, Machine Learning, and Data Assimilation to forecast extreme weather and climate events, improve subseasonal to seasonal predictions, and create projections for the coupled energy–water–food nexus.

Cheng Da works on Coupled Data Assimilation as a postdoctoral research associate at the University of Maryland and the Global Modeling and Assimilation Office at NASA's Goddard Space Flight Center. Supported by the NASA Earth and Space Science Fellowship, he earned his PhD degree under the supervision of Professor Kalnay at the University of Maryland, focusing on the assimilation of precipitation and nonlocal observations in the ensemble data assimilation system and coupled data assimilation. Before this, he earned his bachelor's and Master's degrees in Meteorology at Florida State University, working on radiance assimilation from spaceborne sensors.

Earth System Modeling, Data Assimilation and Predictability

Atmosphere, Oceans, Land and Human Systems

Second Edition

EUGENIA KALNAY

University of Maryland, College Park, MD, US

SAFA MOTE

Portland State University, Portland, OR, US University of Maryland, College Park, MD, US

CHENG DA

University of Maryland, College Park, MD, US
NASA Goddard Space Flight Center, Greenbelt, MD, US

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107009004

DOI: 10.1017/9780511920608

First edition © Eugenia Kalnay 2003

Second edition © Eugenia Kalnay, Safa Mote and Cheng Da 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

When citing this work, please include a reference to the DOI 10.1017/9780511920608

First published 2003, reprinted with corrections 2004 Second edition 2024

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Names: Kalnay, Eugenia, 1942- author. | Mote, Safa, author. |

Da, Cheng (Meteorologist), author.

Title: Earth system modeling, data assimilation and predictability: atmosphere, oceans, land and human systems / Eugenia Kalnay, University

of Maryland, College Park, Safa Mote, University of Maryland, College

Park, Cheng Da, University of Maryland, College Park.

Other titles: Atmospheric modeling, data assimilation, and predictability.

Description: Second edition. | Cambridge, UK; New York, NY: Cambridge

University Press, 2024. | Earlier edition published in 2003 as:

Atmospheric modeling, data assimilation, and predictability. | Includes bibliographical references and index.

Identifiers: LCCN 2023057631 (print) | LCCN 2023057632 (ebook) |

ISBN 9781107009004 (hardback) | ISBN 9780511920608 (ebook)

Subjects: LCSH: Numerical weather forecasting.

Classification: LCC QC996 .K35 2024 (print) | LCC QC996 (ebook) |

DDC 551.63/4-dc23/eng/20240324

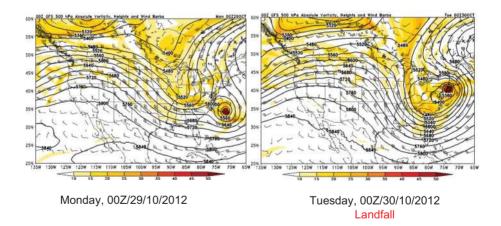
LC record available at https://lccn.loc.gov/2023057631

LC ebook record available at https://lccn.loc.gov/2023057632

ISBN 978-1-107-00900-4 Hardback

ISBN 978-1-107-40146-4 Paperback

Additional resources for this publication at www.cambridge.org/kalnay2e


Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Front Cover Legend: Importance of ensemble forecasting and data assimilation for the forecast of the Hurricane Sandy landing in the New York metro area in 2012 (The actual trajectory of Sandy is shown with a thick black line with a black circle every 6 hours indicating when a new "assimilation of the observation of Sandy's location" took place). This figure, created by Clark Evans, Professor of Atmospheric Sciences at the University of Wisconsin–Milwaukee, (evans36@uwm.edu), shows the National Weather Service ensemble prediction of the devastating Sandy Hurricane landing.

Note that the ensemble trajectories of the NCEP 10-day ensemble forecasts of the Sandy hurricane trajectory were started on October 23, 12UTC (shown with blue lines at the first identification of Sandy), and 6 and 12 hours later (shown with green and red lines respectively). The majority of the earliest (in blue) ensemble forecasts miss the hurricane being "captured" by a strong atmospheric trough (see the inside cover of the book) and continue moving eastwards, driven by the Atlantic westerly winds, as the majority of the Atlantic hurricanes normally do. The green trajectories, that after 6 hours underwent one additional data assimilation, clearly turned west, indicating the influence of the trough that captured the hurricane. The red trajectories, started October 24 00UTC, from the next data assimilation just 12 hrs after the blue trajectories, have a majority that correctly turns west for the landfall.

Why did Sandy turn west around 00Z/29/10/2012? It was captured by a deep trough!

500 hPa NCEP analysis of absolute vorticity, winds, and heights

Contents

Fore	word to	the Fir:	st Edition	page xiii	
Pref	ace to t	he Secoi	nd Edition	XV	
Revi	ews and	d Comm	ents on the First Edition	xviii	
Ackr	iowledg	gments fr	rom the Second Edition	xxiv	
Ackr	iowledg	gments fr	rom the First Edition	XXV	
List	of Vario	ables		xxvii	
List	of Abbi	eviation	S	xxix	
1	An Ov	erview o	of Numerical Weather Prediction	1	
1.1	Intro	duction		1	
1.2	Early	Develop	pments	7	
1.3	Primi	Primitive Equations, Global and Regional Models, and Nonhydrosta			
	Models			13	
1.4	Data Assimilation: Determination of the Initial Conditions				
	for the Computer Forecasts			15	
1.5	Opera	rational NWP and the Evolution of Forecast Skill			
1.6	Weather Predictability, Ensemble Forecasting, and Seasonal				
			l Prediction	27	
1.7	The I	uture		33	
2	The C	Continuous Equations			
2.1	Gove	rning Ec	quations	35	
2.2	Atmo	spheric	Equations of Motion on Spherical Coordinates	39	
2.3	Basic	Basic Wave Oscillations in the Atmosphere			
	2.3.1	Pure Ty	pes of Plane Wave Solutions	42	
		2.3.1.1	Pure Sound Waves	42	
		2.3.1.2	Lamb Waves (Horizontally Propagating Sound Waves)	43	
		2.3.1.3	Vertical Gravitational Oscillations	43	
		2.3.1.4	Inertia Oscillations	44	
		2.3.1.5	Lamb Waves in the Presence of Rotation and Geostrophic Modes	s 44	
	2.3.2 General Wave Solution of the Perturbation Equations in a Re				
			mal Atmosphere	45	
		2.3.2.1	External Waves	48	
		2.3.2.2	Internal Waves	48	

viii Contents

	2.3.3	Analysis	of the FDR of Wave Solutions in a Resting, Isothermal		
		Atmosph	ere	49	
2.4	Filtering Approximations				
	2.4.1	2.4.1 Quasi-geostrophic Approximation			
	2.4.2	Quasi-Bo	oussinesq or Anelastic Approximation	51	
	2.4.3		tic Approximation	52	
2.5	Shallo	w Water	Equations, Quasi-geostrophic Filtering, and Filtering		
	of Ine	rtia-Grav	vity Waves	55	
	2.5.1	Quasi-ge	ostrophic Scaling for the SWE	57	
	2.5.2	Inertia-G	ravity Waves in the Presence of a Basic Flow	60	
2.6	Primitive Equations and Vertical Coordinates				
	2.6.1 General Vertical Coordinates				
	2.6.2	Pressure Coordinates			
	2.6.3	Sigma, E	ta, and Hybrid Coordinates	65	
	2.6.4	Isentropi	c Coordinates	67	
2.7	Introd	Introduction to the Equations for Ocean Models			
	2.7.1	Primitive	Equations for the Oceans	68	
	2.7.2	Ocean Bo	oundary Conditions and Coupled Atmosphere-Ocean Models	70	
2.8	Kelvin Waves and Equatorially Trapped Waves				
	2.8.1	Kelvin W	/aves	71	
	2.8.2	Equatoria	ally Trapped Waves	72	
3	Nume	rical Disc	cretization of the Equations of Motion	76	
3.1	Classification of Partial Differential Equations				
	3.1.1				
	3.1.2	Well-posedness, Initial and Boundary Conditions			
3.2	Initial	tial Value Problems: Numerical Solution 8			
	3.2.1	_			
	3.2.2	Truncatio	on Errors and Consistency	82	
	3.2.3			83	
		_	Criterion of the Maximum	84	
		3.2.3.2	Von Neumann Stability Criterion	85	
		3.2.3.3	Leapfrog Scheme Initialization	90	
		3.2.3.4	Robert-Asselin and Williams Time Filters for Leapfrog	90	
	3.2.4	Implicit 7	Time Schemes	94	
	3.2.5	•			
3.3	Space Discretization Methods 10				
	3.3.1	Space Truncation Errors, Computational Phase Speed, Second- and Fourth-			
	222			100	
	3.3.2 3.3.3	Galerkin and Spectral Space Representation		103	
	3.3.3 Semi-Lagrangian Schemes3.3.4 Nonlinear Computational Instability, Quadratically			106	
	3.3.4		•	108	
	3.3.5		ative Schemes, and the Arakawa Jacobian	115	
3.4		66			
+	DOUIL	ındary Value Problems 12			

			Contents	ix
	3.4.1	Introdu	ction	120
	3.4.2	Direct N	Methods for Linear Systems	122
	3.4.3		e Methods for Solving Elliptic Equations	123
	3.4.4		terative Methods	124
3.5	Latera	al Bound	dary Conditions for Regional Models	126
	3.5.1	Introdu	•	126
	3.5.2	Lateral	Boundary Conditions for One-Way Nested Models	127
	3.5.3		Examples of Lateral Boundary Conditions	130
	3.5.4		ay Interactive Boundary Conditions	131
3.6	Nonh		ic Models	132
3.7			ace Spectral Models: Experiments to Choose the Next	132
5.1		_	lobal Model at NCEP	135
2.0				133
3.8			ate NWP Models That Are Based on Machine Learning	127
	and A	rtificial	Intelligence?	137
4	Introd	uction t	to the Parameterization of Subgrid-Scale Physical Processes	139
4.1	Introd	luction		139
4.2	Subgr	id-Scale	e Processes and Reynolds Averaging	141
4.3	Overv	view of l	Model Parameterizations	144
4.4	The S	PEEDY	Model and Documentation	147
4.5			ameterizations and "Superparameterization"	147
1.0	Cuma	inas i air	Superparameterization	117
5	Data A	Assimila	ition	150
5.1	Introd	luction		150
5.2	Empii	rical An	alysis Schemes	151
	5.2.1	Early A	approaches to Objective Analysis	151
	5.2.2	Success	sive Correction Method	153
	5.2.3	Nudgin	g	155
5.3	Introduction to Statistical Estimation Methods through the Use			
	of Toy Models			
	5.3.1	Sequen	tial (or Least Squares) Method	156
	5.3.2	_	onal (Maximum Likelihood) Approach	160
			Bayes Theorem Applied to Data Assimilation	161
	5.3.3		is Cycle Equations for the "Stone in Space" Toy Model	162
5.4	Multi	-	Statistical Data Assimilation Methods	163
	5.4.1		riate Analysis Cycle: Equations and Their Interpretation	164
	5.4.2		ion of OI and 3D-Var Analysis Equations	166
		5.4.2.1	Some Mathematical Remarks	167
		5.4.2.2	Statistical Assumptions and Derivation of OI and 3D-Var Formulas	168
	5.4.3		cal Solutions of OI and 3D-Var	170
		5.4.3.1	Remarks: Errors of Representativeness, Error Correlations,	
			and Super Observations	171
		5.4.3.2	Optimal Interpolation	171
		5.4.3.3	3D-Var	173
		5.4.3.4	Computation of A, C, and V from the "NMC Method"	
			Background Error Covariance B	176

Contents

	5.4.4		ion of the Background Error Covariance B	178		
		5.4.4.1	Introduction	178		
			Estimations of B Used in OI before the "NMC Method"	179		
			The "NMC Method"	182		
	5.4.5	-	l-Space Statistical Analysis Scheme,			
			Relationship to 3D-Var and OI	184 187		
5.5	e					
	5.5.1		etion: "Errors of the Day"	187		
	5.5.2		Extension of 3D-Var and Its Relationship to Kalman Filter	189		
	5.5.3		cal Solution of 4D-Var: Inner and Outer Loops	192		
	5.5.4		Remarks on 4D-Var	194		
	5.5.5		ction to the Construction of the Tangent Linear and Adjoint Models	196		
5.6	Advanced Data Assimilation Methods with Evolving Covariance:					
	Ensemble Kalman Filter					
	5.6.1					
	5.6.2		ction to the Kalman Filter and Extended Kalman Filter Equations	200		
	5.6.3					
	Root Filters		lters	202		
	5.6.4	-	e of a Square-Root EnKF: Local Ensemble Transform Kalman Filter	204		
		5.6.4.1	Analysis Weights Interpolation	207		
	5.6.5	,		208		
		5.6.5.1	Covariance Hybrid	208		
		5.6.5.2	Gain Hybrid	209		
		5.6.5.3	4D-Var and 4DEnVar	211		
	5.6.6 Running in Place: A No-Cost Smoother		g in Place: A No-Cost Smoother	213		
		5.6.6.1	4D-LETKF and No-Cost Smoother	214		
		5.6.6.2	Use of the No-Cost Smoother to Accelerate the Spin-Up (Running			
			in Place and Quasi Outer Loop)	215		
	5.6.7	Ensemb	le Forecast Sensitivity to Observations and Proactive Quality Control	216		
		5.6.7.1	FSO, EFSO, and HFSO	216		
		5.6.7.2	Brief Derivation of EFSO, and a "Bridging" Example with a			
			Low-Resolution GFS Model and PrepBUFR Observations	217		
		5.6.7.3	Results of EFSO/PQC with a Low-Resolution GFS Model and			
			PrepBUFR Observations	218		
	5.6.8	5.6.8 Particle Filter 2				
6	Atmo	spheric F	Predictability and Ensemble Forecasting	224		
6.1	Intro	luction t	o Atmospheric Predictability	224		
6.2			of Fundamental Concepts about Chaotic Systems	226		
6.3	Tangent Linear Model, Adjoint Model, Singular Vectors,					
	and Lyapunov Vectors					
	6.3.1	* *				
	6.3.2	· ·				
	6.3.3					
	6.3.4		Examples of Singular Vectors and Eigenvectors	240		
6.4			recasting: Early Studies	243		
J		Hole Polecasting, Early Studies 24.				

		Contents	хi	
	6.4.1 Stochastic-Dynamic Forecasting		244	
	6.4.2 Monte Carlo Forecasting		245	
	6.4.3 Lagged Average Forecasting		247	
6.5	Operational Ensemble Forecasting Methods		250	
	6.5.1 Breeding		253	
	6.5.2 Singular Vectors		259	
	6.5.3 Ensembles Based on Multiple Data Assimilat	ion	262	
	6.5.4 Multisystem Ensemble Approach		263	
6.6	Growth Rate of Errors and the Limit of Predi	ctability in Mid-latitudes		
	and in the Tropics		263	
6.7	The Role of the Oceans and Land in Monthly,	Seasonal, and Interannual		
	Predictability		268	
6.8	Decadal Variability and Climate Change		272	
6.9	Historical Development of Earth System M	Iodels: Progressive		
	Coupling of New Components		274	
6.10		man System	275	
6.11				
0.11	Modeling	inproving framair system	278	
6.12		eriments	280	
0.12	Controlling Chaos in Control Simulation Exp	eriments	200	
Appe	ndix A Coding and Checking the Tangent Linea	r and the Adjoint Models	283	
A.1	Verification	-	286	
A.2	Example of FORTRAN Code		287	
Appe	ndix B Postprocessing of Numerical Model Out	put to Obtain Station		
Weat	her Forecasts		292	
B.1	Model Output Statistics		292	
B.2	Perfect Prog		295	
B.3	Adaptive Regression Based on a Simple Kaln	nan Filter Approach	296	
Bibli	ography		299	
Index	Index			